Finding Near-optimal Solutions in Multi-robot Path Planning
نویسندگان
چکیده
We deal with the problem of planning collisionfree trajectories for robots operating in a shared space. Given the start and destination position for each of the robots, the task is to find trajectories for all robots that reach their destinations with minimum total cost such that the robots will not collide when following the found trajectories. Our approach starts from individually optimal trajectory for each robot, which are then penalized for being in collision with other robots. The penalty is gradually increased and the individual trajectories are iteratively replanned to account for the increased penalty until a collision-free solution is found. Using extensive experimental evaluation, we find that such a penalty method constructs trajectories with near-optimal cost on the instances where the optimum is known and otherwise with 4-10 % lower cost than the trajectories generated by prioritized planning and up to 40 % cheaper than trajectories generated by local collision avoidance techniques, such as ORCA.
منابع مشابه
Study of Evolutionary and Swarm Intelligent Techniques for Soccer Robot Path Planning
Finding an optimal path for a robot in a soccer field involves different parameters such as the positions of the robot, positions of the obstacles, etc. Due to simplicity and smoothness of Ferguson Spline, it has been employed for path planning between arbitrary points on the field in many research teams. In order to optimize the parameters of Ferguson Spline some evolutionary or intelligent al...
متن کاملFast, Near-Optimal Computation for Multi-Robot Path Planning on Graphs
We report a new method for computing near optimal makespan solutions to multi-robot path planning problem on graphs. Our focus here is with hard instances those with up to 85% of all graph nodes occupied by robots. Our method yields 100-1000x speedup compared with existing methods. At the same time, our solutions have much smaller and often
متن کاملMulti-objective Evolutionary Path Planning with Neutrality
One of the main challenges when developing mobile robots is path planning. Efficient and robust algorithms are needed to produce plans for the movements of the robot. Many classical path planning algorithms depend on geometrically simple environments to achieve good performance, otherwise the paths produced tend to be far from ideal especially when the paths are to be optimized for multiple obj...
متن کاملMORRF*: Sampling-Based Multi-Objective Motion Planning
Many robotic tasks require solutions that maximize multiple performance objectives. For example, in path-planning, these objectives often include finding short paths that avoid risk and maximize the information obtained by the robot. Although there exist many algorithms for multi-objective optimization, few of these algorithms apply directly to robotic path-planning and fewer still are capable ...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کاملNear-Minimum-Time Motion Planning of Manipulators along Specified Path
The large amount of computation necessary for obtaining time optimal solution for moving a manipulator on specified path has made it impossible to introduce an on line time optimal control algorithm. Most of this computational burden is due to calculation of switching points. In this paper a learning algorithm is proposed for finding the switching points. The method, which can be used for both ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1410.5200 شماره
صفحات -
تاریخ انتشار 2014